Liquid Phase Enthalpy Values for the Ethane–n-Butane System

LAWRENCE C. SMITH and JAMES H. WEBER University of Nebraska, Lincoln, Neb.

Through the application of rigorous thermodynamic relationships and P-V-T-x data, total and partial liquid phase enthalpy values have been calculated for the ethane n-butane system over the pressure range 100 to 550 p.s.i.a.

LNA PREVIOUS ARTICLE (12) saturated liquid phase enthalpy values were presented for the enthane-*n*-butane system at 200 and 400 p.s.i.a. These values were calculated from P-V-T-x data and the differential heat of condensation. The basic relationships (5) are thermodynamically rigorous.

$$\left(\frac{\partial P}{\partial T}\right)_{y} = \frac{\Delta H_{c}}{T\Delta V_{c}} \tag{1}$$

$$\Delta V_c = V_b - V_d + (y - x) \left(\frac{\partial V_G}{\partial_y}\right)_{T,P}$$
(2)

$$\Delta H_c = H_b - H_d + (y - x) \left(\frac{\partial H_c}{\partial_y} \right)_{T, P}$$
(3)

Later, using the differential heat of vaporization as well as that of condensation, Houser and Weber (7) recalculated the saturated liquid phase enthalpy values for the methaneethane system and, in addition, calculated partial enthalpies in the liquid phase. Vennix and Weber (13) performed the same type of calculation for the ethane-*n*-pentane system. The additional equations utilized were:

$$\left(\frac{\partial P}{\partial T}\right)_{x} = \frac{\Delta H_{v}}{T\Delta V_{v}}$$
(4)

$$\Delta V_{\nu} = V_d - V_b - (y - x) \left(\frac{\partial V_L}{\partial_x} \right)_{T, P}$$
(5)

$$\Delta H_{\nu} = H_d - H_b - (y - x) \left(\frac{\partial H_L}{\partial_x}\right)_{T, P}$$
(6)

In both of these works the effect of pressure over 50 p.s.i. intervals at constant temperature on the liquid phase volumes and enthalpies were neglected.

As part of a continuing attempt to evaluate liquid phase enthalpies, both total and partial quantities, the enthane-*n*butane system was restudied. In this case both the differential heats of condensation and vaporization were calculated and total and partial enthalpies in the liquid phase evaluated at 50 p.s.i. intervals over the pressure range 100-550 p.s.i.a. The P-V-T-x data for the binary system used with calculations were those of Kay (8) and the data on pure ethane were those of Barkelew, Valentine, and Hurd (2) and pure *n*-butane of Prengle, Greenhaus, and York (10).

While the amount of liquid phase volumetric data was insufficient to permit the exact application of Equation (5), by neglecting the effect of pressure on the liquid volume over a 50 p.s.i. range the equation could be used. Since volumetric data for the superheated vapor as well as the saturated vapor were required, the use of an equation of state for the vapor phase was necessary. Kay (8) reported only limited data for the saturated vapor. As in the previous work (3, 4), the Benedict-Webb-Rubin equation

$$P = RTd + (B_0RT - A_0 - C_0/T^2)d^2 + (bRT - a)d^3 + a\alpha d^6 + cd^3/T^2[(1 + \gamma d^2)exp(-\gamma d^2)]$$
(7)

was used. This equation, with the exception of one instance (y = 0.1749) at 100 p.s.i.a., predicted vapor volumes in good agreement, average deviation of less than $\pm 1\%$, with those given by Kay (8). In general the predicted and experimental volumes agreed more closely as the pressure was increased. The equation of state was used to determine the quantity $(\partial V_G/\partial y)_{T,P}$, also.

The Benedict-Webb-Rubin equation (3, 4) in the form

$$H - \sum_{i} x_{i} H_{i}^{\circ} = (B_{0}RT - 2A_{0} - 4C_{0}/T^{2})d$$

$$+ (2bRT - 3a)d^{2}/2 + 6a\alpha d^{5}/5 + cd^{2}/T^{2}$$

$$\left[3 \frac{1 - \exp(-\gamma d^{2})}{\gamma d^{2}} - \frac{\exp(-\gamma d^{2})}{2} + \gamma d^{2} \exp(-\gamma d^{2}) \right] (8)$$

was used to calculate enthalpies of gaseous mixtures at their dew point. The ideal gas state enthalpy values, H° , were obtained from API 44 (1). Papadopoulas, Pigford, and Friend (9) differentiated this relationship for the evaluation of partial enthalpies. Their relationship was used to evaluate the terms $(\partial H_G/\partial_Y)_{T,P}$ in Equation 3.

Since the final liquid phase enthalpy values are very sensitive to the values of $(\partial P/\partial T)_y$ and $(\partial P/\partial T)_x$ used in Equations 1 and 4, considerable effort was expended in finding a suitable expression which would relate the pressure and temperature at the dew and bubble point conditions. A modified form of the expression given by Frost and Kalkwarf (6)

$$\ln P = A + B/T + DP/T^2 \tag{9}$$

the quantity $C \ln T$ was deleted from the original expression, was found to be the most suitable of those investigated, the selection being made on the basis of the degree of consistency of the value of the derivatives. The constants were determined by the method of least squares in which a weighting factor was introduced. The procedure has been described by Smith and Tao (11).

With the experimental and calculated data, the values of the saturated liquid phase enthalpies, H_b 's, could be obtained by applying Equations 1, 2, and 3. H_b 's at 50 p.s.i. intervals over the pressure range 100 to 550 p.s.i.a. were determined.

After H_b was determined, the quantity $(\partial H_L/\partial_x)_{T,P}$ could be calculated from Equations 4, 5, and 6. Partial enthalpies can then be calculated readily from

$$H_b = x_1 H_{L1} + x_2 H_{L2} \tag{10}$$

and

$$(\partial H_L/\partial_x)_{T,P} = \boldsymbol{H}_{L1} - \boldsymbol{H}_{L2}$$
(11)

The enthalpy data for the saturated vapor and liquid phases, partial values for the liquid phase, bubble and dew point temperatures as well as compositions are reported in Table I. The saturated liquid phase enthalpies are shown in Figure 1. Figures 2, and 3 give graphical comparisons of the partial enthalpies in the liquid phase and the pure components of ethane and *n*-butane, respectively. Composition and pressure parameters are included on the two enthalpy vs. temperature diagrams.

The liquid phase enthalpy values at 200 p.s.i.a. in this work are from 300 B.t.u.'s/lb. mole less to 200 more than those reported previously, while at 400 p.s.i.a., the present values are 100 to 800 B.t.u.'s/mole greater than the previous ones (12).

Table I.	Enthalpy	and	Partial	Enthalpy	Values	for	Saturated	Mixtures of	Ethane and	l n-Butane ^ª
----------	----------	-----	---------	----------	--------	-----	-----------	--------------------	------------	-------------------------

Mole Frac- tion	t _D	H _D B.t.u.	t _B	H_{L1} B.t.u.	H_{L^2} B.t.u.	B.t.u.	Mole Frac tion	e - t _D	H _D B.t.u.	t _B	H_{L1} B.t.u.	<i>H</i> ₁₂ B.t.u.	B.t.u.
Ethane	۰F.	lbmole	° F.	lbmole	lbmole	lbmole	Ethar	ne °F.	lbmole	° F.	lbmole	lbmole	lbmole
		Pi	ressure-1	00 p.s.1.a.		Pressure-350 p.s.i.a.							
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00	$146.0 \\138.1 \\129.3 \\120.0 \\110.0 \\99.1 \\86.0 \\69.6 \\50.1 \\21.5 \\-46.5$	9,413 8,872 8,327 7,792 7,264 6,742 6,205 5,644 5,074 4,422 3,326	$146.0 \\ 96.7 \\ 58.9 \\ 30.3 \\ 10.3 \\ -4.9 \\ -17.4 \\ -27.8 \\ -36.0 \\ -42.0 \\ -46.5 \\ $	$\begin{array}{r} 1,471\\12\\-945\\-1,585\\-1,970\\-2,125\\-2,142\\-2,140\\-2,120\\-2,088\\-2.042\end{array}$	$\begin{array}{r} 320 \\ -232 \\ -580 \\ -856 \\ -1,140 \\ -1,307 \\ -1,450 \\ -1,600 \\ -1,856 \\ -2,042 \end{array}$	$1,471 \\ -22 \\ -1,123 \\ -2,015 \\ -2,713 \\ -3,110 \\ -3,395 \\ -3,750 \\ -4,200^{\circ} \\ -4,176^{\circ} \\ \cdots$	0.00 0.11 0.22 0.34 0.44 0.55 0.66 0.74 0.86 0.99 1.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 11,200\\ 10,470\\ 9,752\\ 9,037\\ 48,344\\ 7,657\\ 6,981\\ 6,283\\ 95,555\\ 94,702\\ 83,560\\ \end{array}$	$\begin{array}{c} 257.0\\ 219.7\\ 183.6\\ 152.3\\ 125.6\\ 103.1\\ 84.3\\ 68.7\\ 54.8\\ 41.8\\ 32.8 \end{array}$	$\begin{array}{c} 6,071\\ 4,320\\ 2,915\\ 1,872\\ 1,028\\ 432\\ 86\\ -122\\ -250\\ -322\\ -342\end{array}$	5,350 3,795 2,660 1,920 1,340 910 563 250 -35 -342	$\begin{array}{c} 6,071\\ 4,205\\ 2,695\\ 1.530\\ 435\\ -475\\ -1,150\\ -1,720\\ -2,250\\ -2,905\\ \end{array}$
		Pr	essure-1	50 p.s.i.a.			Pressure-400 p.s.i.a.						
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00	$177.3 \\ 168.8 \\ 159.0 \\ 148.5 \\ 137.3 \\ 125.1 \\ 110.6 \\ 92.9 \\ 72.0 \\ 41.6 \\ -23.8 \\ 100000000000000000000000000000000000$	9,979 9,401 8,807 8,220 7,644 7,073 6,488 5,880 5,265 4,559 3,436	$\begin{array}{c} 177.3 \\ 132.0 \\ 94.5 \\ 64.6 \\ 42.2 \\ 25.3 \\ 11.2 \\ -0.6 \\ -10.2 \\ -18.0 \\ -23.8 \end{array}$	$\begin{array}{c} 2,646\\ 1,070\\ 0\\ -745\\ -1,250\\ -1,523\\ -1,624\\ -1,642\\ -1,640\\ -1,625\\ -1,598\end{array}$	$\begin{array}{r} 1,500\\ 650\\ 180\\ -225\\ -550\\ -773\\ -930\\ -1,183\\ -1,390\\ -1,598\end{array}$	$\begin{array}{c} 2,646\\ 1,017\\ -162\\ -1,140\\ -1,935\\ -2,496\\ -2.900\\ -3,300\\ -3,468^{\circ}\\ -3,468^{\circ}\\$	0.00 0.11 0.22 0.33 0.04 0.03 0.66 0.76 0.86 0.78 0.99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 11,300\\ 5,10,550\\ 9,822\\ 9,104\\ 8,398\\ 7,700\\ 7,012\\ 6,307\\ 5,555\\ 6,4,700\\ 3,545\\ \end{array}$	$\begin{array}{c} 270.9\\ 235.1\\ 200.6\\ 169.1\\ 141.6\\ 118.1\\ 98.5\\ 81.5\\ 66.7\\ 53.1\\ 43.0 \end{array}$	$\begin{array}{c} 6,841 \\ 5,125 \\ 3,650 \\ 2,498 \\ 1,557 \\ 880 \\ 468 \\ 215 \\ 53 \\ -46 \\ -88 \end{array}$	6,100 4,535 3,280 2,385 1,765 1,300 881 535 245 -88	$\begin{array}{c} 6,841 \\ 5,017 \\ 3,428 \\ 2,163 \\ 1,005 \\ -5 \\ -780 \\ -1,340 \\ -1,875 \\ -2,670 \\ \ldots \end{array}$
		Pr	essure -20	00 p.s.i.a.			Pressure-450 p.s.i.a.						
$\begin{array}{c} 0.00\\ 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 1.00\\ \end{array}$	$\begin{array}{c} 202.7\\ 193.1\\ 182.3\\ 170.8\\ 158.4\\ 144.2\\ 128.5\\ 111.1\\ 88.7\\ 57.2\\ -6.1 \end{array}$	$\begin{array}{c} 10,430\\ 9,802\\ 9,166\\ 8,539\\ 7,918\\ 7,288\\ 6,664\\ 6,049\\ 5,392\\ 4,648\\ 3,502\\ \end{array}$	$\begin{array}{c} 202.7\\ 159.7\\ 123.0\\ 92.9\\ 68.7\\ 49.2\\ 33.9\\ 20.9\\ 10.0\\ 1.0\\ -6.1 \end{array}$	$\begin{array}{c} 3,643\\ 1,990\\ 788\\ -32\\ -620\\ -970\\ -1,125\\ -1,188\\ -1,220\\ -1,228\\ -1,226\end{array}$	$\begin{array}{c} 2,525\\ 1,563\\ 890\\ 363\\ -28\\ -326\\ -523\\ -737\\ -1,007\\ -1,226\end{array}$	$\begin{array}{c} 3,643\\ 1,930\\ 594\\ -427\\ -1,275\\ -1,912\\ -2,322\\ -2,740\\ -3,150\\ -3,217,\\ \end{array}$	0.00 0.11 0.22 0.30 0.40 0.55 0.60 0.70 0.80 0.99 1.00	$\begin{array}{ccccc} 283.5\\ 268.6\\ 253.5\\ 237.7\\ 237.7\\ 221.4\\ 204.2\\ 185.8\\ 164.5\\ 138.4\\ 103.7\\ 52.3 \end{array}$	$\begin{array}{c} 11,320\\ 10,610\\ 9,880\\ 9,144\\ 8,425\\ 7,718\\ 7,023\\ 6,305\\ 5,540\\ 4,669\\ 3,513\end{array}$	$\begin{array}{c} 283.5\\ 249.8\\ 216.7\\ 184.7\\ 155.9\\ 131.8\\ 111.2\\ 93.7\\ 77.9\\ 63.3\\ 52.3 \end{array}$	$7,606 \\ 5,825 \\ 4,310 \\ 3,118 \\ 2,116 \\ 1,368 \\ 883 \\ 588 \\ 390 \\ 260 \\ 172$	6,860 5,250 3,830 2,830 2,150 1,620 1,200 823 500 172	$\begin{array}{c} 7,606\\ 5,710\\ 4,075\\ 2,813\\ 1,640\\ 586\\ -222\\ -840\\ -1,345\\ -1,300\\ \ldots \end{array}$
		Pr	essure-25	50 p.s.i.a.					P	essure-5	600 p.s.i.a.		
$\begin{array}{c} 0.00\\ 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 1.00\\ \end{array}$	$\begin{array}{c} 223.3\\ 212.9\\ 201.2\\ 188.5\\ 175.5\\ 160.7\\ 144.4\\ 124.9\\ 101.8\\ 70.0\\ 8.7 \end{array}$	$\begin{array}{c} 10,750\\ 10,100\\ 9,432\\ 8,762\\ 8,119\\ 7,465\\ 6,818\\ 6,150\\ 5,469\\ 4,703\\ 3,541 \end{array}$	223.3 182.1 145.8 116.1 91.1 70.0 53.0 39.1 27.0 16.9 8.7	$\begin{array}{c} 4,521\\ 2,850\\ 1,566\\ 611\\ -58\\ -480\\ -700\\ -810\\ -870\\ -895\\ -902 \end{array}$	3,385 2,310 1,540 835 450 126 -140 -383 -650 -902	4,521 2,790 1,380 212 -720 -1,410 -1.940 -2,373 -2,820 -3,100*	$\begin{array}{c} 0.00\\ 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.66\\ 0.70\\ 0.80\\ 0.90\\ 1.00\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 11,210\\ 10,590\\ 9,875\\ 9,129\\ 8,400\\ 7,703\\ 7,020\\ 6,285\\ 5,495\\ 4,618\\ 3,461\\ \end{array}$	$\begin{array}{c} 295.0\\ 263.2\\ 230.7\\ 198.9\\ 169.7\\ 144.6\\ 123.0\\ 104.5\\ 88.0\\ 72.8\\ 60.8 \end{array}$	$\begin{array}{c} 8,433\\ 6,608\\ 5,020\\ 3,735\\ 2,696\\ 1,862\\ 1,297\\ 937\\ 700\\ 530\\ 433\\ \end{array}$	8,020 5,940 4,290 3,245 2,522 1,995 1,510 1,125 804 433	$\begin{array}{c} 8,433\\ 6,450\\ 4,790\\ 3,497\\ 2,330\\ 1,200\\ -250\\ -400\\ -1,000\\ -1,940\\ \cdots\end{array}$
Pressure-300 p.s.i.a.									Pr	essure-5	50 p.s.i.a.		
$\begin{array}{c} 0.00\\ 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 1.00\\ \end{array}$	$\begin{array}{c} 241.2\\ 229.2\\ 216.9\\ 203.5\\ 189.1\\ 173.7\\ 157.0\\ 137.2\\ 113.0\\ 79.5\\ 21.5 \end{array}$	$\begin{array}{c} 11,000\\ 10,300\\ 9,619\\ 8,928\\ 8,244\\ 7,573\\ 6,913\\ 6,232\\ 5,520\\ 4,710\\ 3,560\end{array}$	241.2 201.9 166.0 134.9 109.0 87.1 69.3 54.8 41.9 29.8 21.5	$5,308 \\ 3,572 \\ 2,220 \\ 1,255 \\ 505 \\ 2 \\ -280 \\ -458 \\ -560 \\ -610 \\ -614$	$\begin{array}{c}\\ 4,400\\ 3,088\\ 2,106\\ 1,418\\ 922\\ 550\\ 214\\ -65\\ -317\\ -614\end{array}$	5,3083,4802,003890-103-918-1,520-2,026-2,541-3,246	$\begin{array}{c} 0.00\\ 0.10\\ 0.22\\ 0.30\\ 0.40\\ 0.50\\ 0.66\\ 0.70\\ 0.80\\ 0.90\\ 1.00\end{array}$	$\begin{array}{ccccc} 305.8\\ 0 & 288.7\\ 0 & 271.7\\ 0 & 254.5\\ 0 & 236.8\\ 0 & 218.8\\ 0 & 218.8\\ 0 & 199.8\\ 0 & 177.3\\ 0 & 149.9\\ 0 & 115.5\\ 0 & 68.6 \end{array}$	$\begin{array}{c} 10,740\\ 10,440\\ 9,774\\ 9,064\\ 8,348\\ 7654\\ 6,969\\ 6,232\\ 5,434\\ 4,548\\ 3,382\\ \end{array}$	$\begin{array}{c} 305.8\\ 275.5\\ 244.3\\ 213.4\\ 183.7\\ 157.3\\ 134.4\\ 115.0\\ 97.6\\ 81.5\\ 68.6 \end{array}$	$10,220 \\ 7,442 \\ 5,820 \\ 4,432 \\ 3,320 \\ 2,400 \\ 1,752 \\ 1,326 \\ 1,030 \\ 796 \\ 684$	9,065 6,645 4,850 3,675 2,995 2,346 1,817 1,442 1,051 684	$\begin{array}{c} 10,220\\ 7,261\\ 5,613\\ 4,253\\ 3,083\\ 1,805\\ 860\\ 180\\ -620\\ -1,500\\ \ldots\end{array}$

 $^{\circ}0.0$ for the pure components in the ideal-gas state at unit fugacity and 0° Rankine. The vapor and liquid phase enthalpies of the pure components, obtained from the literature sources cited,

were in all instances adjusted to this reference state. *Extrapolated values.

Figure 1. Liquid phase enthalpy vs. composition ethane-n-butane system

Figure 2. Enthalpy vs. temperature diagram for ethane. Partial enthalpies of liquid ethane in ethane-n-butane system included

ACKNOWLEDGMENT

The authors wish to acknowledge aid from the Phillips Petroleum Co. in the form of a fellowship to Lawrence C. Smith.

NOMENCLATURE

- enthalpy, B.t.u. per lb. mole Η
- Ħ -
- partial enthalpy, B.t.u. per lb. mole differential heat of condensation, B.t.u. per lb. mole $\Delta H_c =$
- ΔH_v = differential heat of vaporization, B.t.u. per lb. mole
 - Р = pressure, lbs. per sq. inch abs.
 - R gas law constant, 10.731 (lbs. per sq. in.)(cu. ft.) per = (lb. mole) (° R.)
 - temperature, ° R. τ 2
 - = volume, cu. ft. per lb. mole

Figure 3. Enthalpy vs. temperature diagram for n-butane. Partial enthalpies of liquid *n*-butane in ethane-*n*-butane included

- $\Delta V_{c} =$ volume change accompanying differential condensation process, cu. ft. per lb. mole
- $\Delta V_{\rm c}$ volume change accompanying differential vaporization =
- V partial volume, cu. ft. per lb. mole =
- d = density, lb. moles per cu. ft.
- mole fraction in liquid phase x =
- = mole fraction in vapor phase y

 $A_0, B_0, C_0, a, b, c, \alpha, \gamma$ = empirical constants of Benedict-Weeb-Rubin equation of state

A, B, D = constants, Equation 9

Subscript

- Ggas phase =
- liquid phase L =
- b = bubble point
- d = dew point
- component i in a mixture i =
- 1 Ξ component 1 in a mixture

Superscript

• = property in ideal gas state

LITERATURE CITED

- Am. Petrol. Inst. Research Proj. 44, Table lu-E, Carnegie (1)Inst. Technol., Pittsburgh, Pa., 1953.
- (2)Barkelew, C.H., Valentine, J.L., Hurd, C.O., Trans. Am. Inst. Chem. Engrs. 43, 25 (1947). Benedict, M., Webb, G.B., Rubin, L.C., Chem. Eng. Progr.
- (3)47, 419, 449 (1951)
- Benedict, M., Webb, G.B., Rubin, L.C., J. Chem. Phys. 8, (4)334 (1940); 747 (1942). Dodge, B.F., "Chemical Engineering Thermodynamics,"
- (5)p. 130, McGraw-Hill, New York, 1944.
- (6)Frost, A.A., Kalkwarf, D.R., J. Chem. Phys. 21, 264 (1953).
- Houser, C.G., Weber, J.H., J. CHEM. ENG. DATA 6, 510 (7)(1961)
- Kay, W.B., Ind. Eng. Chem. 32, 355 (1940). (8)
- Papadopoulos, A., Pigford, R.L., Friend, Leo, Chem. Eng. (9) Progr., Symp. Ser. 49, No. 7, Appl. Thermodynamics 119 (1953).
- Prengle, H.W., Jr., Greenhaus, L.R., York, Robert, Jr., (10)Chem. Eng. Prog. 44, 863 (1948).
- Smith, L.C., Tao, L.C., Chem. Eng. 70, No. 21, 193 (1963). (11)
- Stiehl, J.G., Hobson, Merk, Weber, J.H., A.I.Ch.E. J. 2, 389 (12)(1956).
- Vennix, A.J., Weber, J.H., J. CHEM. ENG. DATA 7, 169 (13)(1962).

RECEIVED for review November 29, 1963. Accepted February 19, 1964.